Abstract

Aluminum 7075 is a functional aerospace alloy that has high strength and low formability during room temperature deep drawing. Therefore, to avoid warm forming process and relative difficulties, careful control in the process design is needed to enhance quality of drawn part and improve die life. In the present work, an attempt was made to experimentally and numerically study the effect of hydrodynamic deep drawing process such as die geometry and fluid pressure on thinning ratio and punch force. Statistical analysis based on response surface methodology was carried out to correlate empirical relationship between die corner radius, punch corner radius and die fluid pressure as process factors and maximum thinning ratio and punch force as responses. Sensitivity analysis was also performed to find out the factor having greatest impact on aforementioned responses. Further, optimization was carried out by using desirability approach to find out optimal parameter setting to attain minimum thinning and forming force simultaneously. Results indicated that punch and die corner radius followed by fluid had significant effect on the process quality characteristics. Moreover, setting of 9.3 mm punch corner radius, 2 mm die corner radius and 26 MPa fluid pressure resulted in 71% desirability incorporating 31% thinning and 175 MPa punch force. The obtained optimal results were then verified through both FE simulation and confirmatory experiment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call