Abstract
A major drawback of present superconducting electronics is the lack of suitable large scale memory. One approach to circumvent this problem is to use semiconducting CMOS memory in conjunction with the fast Josephson junction (JJ) logic. This requires operating the CMOS memory at cryogenic temperatures. The speed of CMOS circuits has been shown to increase at cryogenic temperatures. Further increase in speed can be obtained by using JJ sense circuits in the CMOS memory. Preliminary results show that access time of 1.5 ns should be possible with this hybrid JJ/CMOS approach using 1.2 micron CMOS, and JJ sense and interface circuits. We also report the results of an analysis of the optimal operating temperature of such hybrid memories in conjunction with refrigeration requirements in light of the emerging cryocooler technologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.