Abstract

Integrating a high power source, like a super capacitor (SCAP), and a lithium-ion battery (LIB) for electric vehicle (EV) applications yields achievement improvements, including maximum reliability, long lifetime (LT), small size, and competitive pricing for the overall source. A hybrid energy storage system (ESS) controlled by an intelligent energy management strategy (EMS) may be substantially included in multi-source EV design and development. Therefore, this paper proposes a hybrid chimp optimization algorithm (ChOA) and Levy walk technique to create an optimum EMS. The proposed technique reduces battery power (BP) stress and increases the LT, which is accomplished by using a hybrid ChOA-Levy walk (ChOA-LW) optimization algorithm with a rule-based approach in accordance with understanding the performance of LIB and SCAP. In order to optimize the rule-based EMS's control settings, the latter strategy is suggested. The control approach can be implemented online once the offline optimization procedure is finished. The presented technique is evaluated via simulation and on an experimental platform by means of a power emulator testbed of a LIB/SCAP hybrid ESS. In terms of BP stress and LT, the findings are compared with a conventional rule-based approach and a mono-source containing a regular high-power LIB. Results obtained demonstrate the effectiveness of the suggested technique, which enables the requested performance to be satisfied with better energy utilization. The assessment results also show notable LT improvements for the LIB, an improvement of up to 19% over the mono-source in reference to a conventional single cell LIB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.