Abstract

This paper presents the optimization of hexagonal honeycomb structures with internal contact mechanisms for energy absorption applications. While extensive work has been reported in the literature on traditional honeycombs of varying geometries under dynamic and static loading, contact-aided compliant cellular mechanisms under quasi-static crushing or impact have not been previously considered. This paper addresses this void through the optimization of a hexagonal honeycomb unit cell containing a contact mechanism. An optimization problem is formulated that maximizes the strain energy per area of a contact-aided compliant cellular mechanism. Two- and three-variable optimization problems are considered, using variables that define the cell geometry and the initial contact gap. It is found that with the addition of a contact mechanism, more strain energy can be absorbed when compared to the same cell without a contact mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call