Abstract

The aim of this study is to demonstrate that rebalancing of metabolic fluxes at acetyl-CoA branch node can substantially improve the titer and productivity of hexanoic acid in recombinant Escherichia coli strains. First, a hexanoic acid-producing E. coli strain was constructed by expressing genes encoding β-ketothiolase (BktB) from Cupriavidus necator and acetyl-CoA transferase (ACT) from Megasphaera sp. MH in a butyric acid producer strain. Next, metabolic flux was optimized at the acetyl-CoA branch node by fine-tuning the expression level of the gene for acetyl-CoA acetyltransferase (AtoB). Four synthetic 5′-untranslated regions were designed for atoB using UTR Designer to modulate the expression level of the gene. Notably, the productivity of the optimized strain (14.7 mg/L/h) was the highest among recombinant E. coli strains in literature when using a similar inoculum size for fermentation. These results show that fine-tuning the expression level of atoB is critical for production of hexanoic acid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call