Abstract

Hyperpolarized 13C NMR at natural abundance, based on dissolution dynamic nuclear polarization (d-DNP), provides rich, sensitive and repeatable 13C NMR fingerprints of complex mixtures. However, the sensitivity enhancement is associated with challenges such as peak overlap and the difficulty to assign hyperpolarized 13C signals. Ultrafast (UF) 2D NMR spectroscopy makes it possible to record heteronuclear 2D maps of d-DNP hyperpolarized samples. Heteronuclear UF 2D NMR can provide correlation peaks that link quaternary carbons and protons through long-range scalar couplings. Here, we report the analytical assessment of an optimized UF long-range HETCOR pulse sequence, applied to the detection of metabolic mixtures at natural abundance and hyperpolarized by d-DNP, based on repeatability and sensitivity considerations. We show that metabolite-dependent limits of quantification in the range of 1-50 mM (in the sample before dissolution) can be achieved, with a repeatability close to 10% and a very good linearity. We provide a detailed comparison of such analytical performance in two different dissolution solvents, D2O and MeOD. The reported pulse sequence appears as an useful analytical tool to facilitate the assignment and integration of metabolite signals in hyperpolarized complex mixtures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.