Abstract

Dynamic aperture is one of the deciding parameters of the low emittance electron storage ring performance. Sufficient dynamic aperture is required to reach higher injection efficiency as well as good beam lifetime. In low emittance storage rings, dynamic aperture is limited mainly by the chromaticity correcting sextupoles, which is enhanced by introducing more sextupole magnets in the dispersion free straight section of the ring lattice, known as “harmonic sextupoles”. In Indus-2 storage ring lattice also, there is a plan to accommodate harmonic sextupoles. In this paper we present, how the strength of harmonic sextupoles is optimized for suppressing resonance driving terms up to third order, those are responsible for reducing the dynamic aperture. In such optimization, one of the main difficulties is to choose the optimal weight factor for the different resonance driving terms. We evolved an approach for assigning the relative weight to the various resonances driving terms which is found to be working very well for Indus-2 storage ring. Following this approach, the strength of the harmonic sextupoles is optimized and there is a reasonable enhancement of dynamic aperture with harmonic sextupoles for two different working points of Indus-2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.