Abstract

This paper presents analyze the effects of process parameters on weld distortion and depth of weld penetration of GTA welded stainless steel plate of AISI 304 stainless steel Grade. The main aim of varying process parameter is to achieve minimum weld distortion and maximum weld bead penetration or depth of penetration. Design of experiment approach was used to plan and design the experiment to study the effect of welding process parameter on weld penetration of GTA welded stainless steel plate of AISI 304 stainless steel grade. Four input parameter- welding current, gas flow rate, root face and welding speed were selected to ascertain their effect on the distortion and depth of penetration. L9 Orthogonal Array technique is used to formulate the experiment layout. From the results obtained it is found that the Welding speed (WS) is the most significant parameter for distortion during gas tungsten arc welding. The recommended parametric combination for optimum distortion is welding current (90 A), gas flow rate (10 LPM), root face (1 mm) and welding speed (31.578 mm/min) and the optimum response value is 2.3996 mm. A confirmation experiment was also performed and verified for the effectiveness of the Taguchi method and the % error between predicted optimal and experimental values for selected response parameters were found well within the acceptable limit.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call