Abstract

Growth conditions can significantly affect the removal efficiency of heavy metals by microorganisms. The goal of this study was enhancing the removal efficiency of Cr(VI) and improving the application of Acinetobacter sp. Cr1 (GenBank accession number of 16S rDNA sequence, MN900681). This study focused on pH, Cr(VI) concentration and culture time, which were the major influence factors for removal efficiency of Cr(VI). A central composite design was employed to optimize the removal efficiency by optimizing three variables. The optimum growth conditions were as: pH of 9.52, Cr(VI) concentration of 128.55 mg l-1, culture time of 43.30 h, and the predicted and actual maxima were 65.13% and 67.26%, respectively. Therefore, it is suggested that the strain Acinetobacter sp. Cr1 had a promising potential to be used for bioremediation of Cr(VI).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.