Abstract

In this study, dry fractionation process was proposed in order to obtain protein-enriched sunflower meal fractions. The process includes two-stage grinding using a hammer mill and a roll mill, and fractionation of sunflower meal by sieving. Central composite design (CCD) with four variables on three levels within response surface methodology was applied in order to estimate the influence of grinding parameters (sieve openings diameter of the hammer mill: 2, 4, and 6 mm, roll gap: 0.15, 0.2, and 0.25 mm, feed rate: 0.1, 0.175, and 0.25 kg/cm min, and roll speed: 400, 500, and 600 rpm) on responses (protein content, fraction yield and grinding energy consumption). Sieve openings diameter expressed the highest impact on fraction yield while roll gap expressed the most dominant influence on protein content in the fraction and grinding energy consumption. The highest protein content obtained was 48.06%(dm) with fraction yield of 77.22%. A multi-response optimization procedure was performed and optimal values were: sieve openings diameter of 2 mm, roll gap of 0.25 mm, feed rate of 0.2 kg/cm min, and roll speed of 400 rpm, while predicted values for a desired range of responses were: protein content 45.5%(dm), fraction yield 77.89%, and grinding energy consumption 8.31 Wh/kg.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.