Abstract

Grain supply chain transportation problem is a nontrivial and intractable issue for many developing countries. Grain as a bulk commodity is usually transported by bulk carriers. By taking into account the special condition of Ukraine, we proposed the containerized grain supply chain transportation optimization problem. In this problem, the sustainable supply chain system delivers grains in containers among primary elevators, intermodal yards, and port container terminals. Then, a containerized grain transportation model was developed to minimize the total cost of the sustainable supply chain system. Specifically, 20-foot containers were proven as more reasonable to be used in this paper. We also considered different transportation tools: trucks that can load one 20-foot container, trailers that can load two 20-foot containers, and wagons that can hold two 20-foot containers. Additionally, a disruption model was proposed by considering different disruption scenarios. Based on an analysis of the simulation results, some cost minimization strategies were proposed. Finally, a sensitivity analysis that aimed to analyze the effect of the proposed strategies on the minimal total cost and sustainability of the supply chain was conducted. The main conclusions drawn from the simulation are that the established food supply chain model is meaningful and accurate, and the incorporation of the disruption model aligns with practical requirements. Additionally, an increase in intermodal yard capacity, truck park size, and wagon park size decreases the total cost of the supply chain. The first two have a positive effect on the sustainability of the supply chain, while the latter increases the disruption risk of the supply chain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call