Abstract

Three-phase graphene/fibre-reinforced cantilever skew laminates are optimized with the design objective of maximizing the fundamental frequency. Four optimal design problems are formulated involving one, two, three, and four design variables: graphene content, fibre content, layer thicknesses, and the fibre orientations. Optimization is implemented using a Sequential Quadratic Programming optimization algorithm within finite element analysis. It is observed that optimizing the graphene and fibre contents across the thickness leads to increased fundamental frequency. A trend is observed for the frequency of skew laminates to increase but for their design efficiency to decrease compared to rectangular laminates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call