Abstract
Ganciclovir (GCV) and valganciclovir (VGCV) show large interindividual pharmacokinetic variability, particularly in children.The objectives of this study were (1) to develop machine learning (ML) algorithms trained on simulated pharmacokinetics profiles obtained by Monte Carlo simulations to estimate the best gancicloviror valganciclovirstarting dose in children and (2) to compare its performances on real-world profiles to previously published equation derived from literature population pharmacokinetic (POPPK) models achieving about 20% of profiles within the target. The pharmacokinetic parameters of four literature POPPK models in addition to the World Health Organization (WHO) growth curve for children were used in the mrgsolve R package to simulate 10,800 pharmacokinetic profiles. ML algorithms were developed and benchmarked to predict the probability to reach the steady-state, area-under-the-curve target (AUC0-24within 40-60 mg × h/L) based on demographic characteristics only. The best ML algorithm was then used to calculate the starting dose maximizing the target attainment. Performances were evaluated for ML and literature formula in a test set and in an external set of 32 and 31 actual patients (GCV and VGCV, respectively). A combination of Xgboost, neural network, and random forest algorithms yielded the best performances and highest target attainment in the test set (36.8% for GCV and 35.3% for the VGCV). In actual patients, the best GCV ML starting dose yielded the highest target attainment rate (25.8%) and performed equally for VGCV with the Franck model formula (35.3% for both). The ML algorithms exhibit good performances in comparison with previously validated models and should be evaluated prospectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.