Abstract

In this paper, an optimal design to minimize the cost of the fuel cell and supercapacitor in a fuel-cell electric vehicle is presented. It is assumed that the cost of the fuel cell and supercapacitor is a function of the number of units of each, respectively. The constraints on the number of fuel-cell units and supercapacitor units are derived according to the system requirement of maintaining stable dc-link voltage for all possible vehicle operations. These constraints are combined with the derived cost function to obtain the optimal number of fuel-cell units and supercapacitor units and the minimum cost. The cost, volume, and weight of the optimized fuel cell and supercapacitor of the powertrain and the fuel economy of the vehicle are evaluated. Simulation results are presented to verify the design

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call