Abstract

This study investigated the effects of free air space (FAS) (45%, 55%, 65%) on bacterial dynamics for gaseous emissions during kitchen waste composting. Results show that FAS increase from 45% to 65% elevated oxygen diffusivity to inhibit bacteria for fermentation (e.g. Caldicoprobacter and Ruminofilibacter) to reduce methane emission by 51%. Moreover, the increased FAS accelerated heat loss to reduce temperature and the abundance of thermophiles (e.g. Thermobifida and Thermobacillus) for aerobic chemoheterotrophy to mitigate ammonia emission by 32%. Nevertheless, the reduced temperature induced the growth of Desulfitibacter and Desulfobulbus for sulfate/sulfite respiration to boost hydrogen sulphide emission. By contrast, FAS at 55% achieved the highest germination index and favored the proliferation of nitrifiers and denitrifiers (e.g. Roseiflexus and Steroidobacter) to improve nitrate availability, thus slightly enhancing nitrous oxide emission. Thus, FAS at 55% exhibits the optimal performance for gaseous emission reduction and maturity enhancement in kitchen waste composting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call