Abstract
Missing pulse (MP) steady-state free precession (SSFP) is a magnetic resonance imaging (MRI) pulse sequence that is highly tolerant to the magnetic field inhomogeneity. In this study, optimal flip angle and radiofrequency (RF) phase scheduling in three-dimensional (3D) MP-SSFP is introduced to maximize the steady-state magnetization while keeping broadband excitation to cover widely distributed frequencies generated by inhomogeneous magnetic fields. Numerical optimization based on extended phase graph (EPG) simulation was performed to maximize the MP-SSFP steady-state magnetization. To limit the specific absorption rate (SAR) associated with the broadband excitation in 3D MP-SSFP, SAR constraint was introduced in the numerical optimization. Optimized flip angle and RF phase settings were experimentally tested by introducing a linear inhomogeneous magnetic field in a range of 10-20 mT/m and using a phantom with known T1/T2 relaxation and diffusion parameters at 3 T. The experimental results were validated through comparisons with EPG simulation. Image contrasts and molecular diffusion effects were investigated in in vivo human brain imaging with 3D MP-SSFP with the optimal flip angle and RF phase settings. In the phantom measurements, the optimal flip angle and RF phase settings improved the MP-SSFP steady-state magnetization/signal-to-noise ratio by up to 41% under the fixed SAR conditions, which matched well with EPG simulation results. In vivo brain imaging with the optimal RF pulse settings provided T2-like image contrasts. Diffusion effects were relatively minor with the linear inhomogeneous field of 10-20 mT/m for white and gray matter, but cerebrospinal fluid showed conspicuous signal intensity attenuation as the linear inhomogeneous field increased. Numerical optimization achieved significant improvement in the steady-state magnetization in MP-SSFP compared with the RF pulse settings used in previous studies. The proposed flip angle and RF phase optimization is promising to improve 3D MP-SSFP image quality for MRI in inhomogeneous magnetic fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.