Abstract

FK-506 is a potent immunosuppressive macrocyclic polyketide with growing pharmaceutical interest, produced by Streptomyces tsukubaensis. However, due to low levels synthesized by the wild-type strain, biotechnological production of FK-506 is rather limited. Optimization strategies to enhance the productivity of S. tsukubaensis by means of genetic engineering have been established. In this work primarily global regulatory aspects with respect to the FK-506 biosynthesis have been investigated with the focus on the global Crp (cAMP receptor protein) regulator. In expression analyses and protein-DNA interaction studies, the role of Crp during FK-506 biosynthesis was elucidated. Overexpression of Crp resulted in two-fold enhancement of FK-506 production in S. tsukubaensis under laboratory conditions. Further optimizations using fermentors proved that the strategy described in this study can be transferred to industrial scale, presenting a new approach for biotechnological FK-506 production.Key Points• The role of the global Crp (cAMP receptor protein) regulator for FK-506 biosynthesis in S. tsukubaensis was demonstrated• Crp overexpression in S. tsukubaensis was applied as an optimization strategy to enhance FK-506 and FK-520 production resulting in two-fold yield increase

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.