Abstract

To date, almost all coil-design codes, e.g. NESCOIL, COILOPT, FOCUS codes, etc, have been primarily attributed to the optimization of filament coils for stellarators. However, evolving to a practical/finite-sized coil from a filament coil, the finite-size effect of coils significantly constrains the fabrication tolerances of a coil system. This paper presents a novel approach that emphasizes the optimization of practical modular coils to reduce sensitivity to fabrication tolerances and to achieve the expected magnetic configurations precisely. A new evaluation parameter, surface twist, is defined in this paper and applied to the optimization sequence in addition to the practical coil line torsion and curvature. The approach has been applied to the framework of the filament coil scheme in the Chinese first quasi-axisymmetric stellarator. This practical coil system without surface twists has been accomplished. Compared to the original finite-sized coil design, the new result is a more considerable simplification of coil shapes, such that in a certain direction view each finite-sized coil becomes a planar-like one. Moreover, this method can also be implemented for the estimation of stochastic deviations of practical coils during the fabrication and assembly of the coil system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.