Abstract

A finite volume holographic grating coupler (VHGC) normally illuminated with various incident-beam profiles (such as a Gaussian beam, a flat cosine-squared beam, and an exponential-decay beam) with finite beam widths for input coupling is rigorously analyzed by use of the finite-difference frequency-domain method. The effects of the incident-beam width, the incident-beam position, the incident-beam profile, and the incident-beam angle of incidence on the input coupling efficiency are investigated. The optimum conditions for input coupling are determined. Both a VHGC embedded in the waveguide film region and a VHGC placed in the waveguide cover region are investigated. For a given finite VHGC, the input coupling efficiencies are strongly dependent on incident-beam widths, incident-beam positions, and incident-beam angles of incidence, but are only weakly dependent on incident-beam profiles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.