Abstract

The present study aims to determine the improvement in the bending strength of the non-standard high contact ratio spur gears based on the balanced (optimum) fillet stress of the pinion and gear. The average number teeth in contact is more than two for high contact ratio gear drives. In the non-standard high contact ratio spur gears, the rack cutter tooth thickness factor is more than 0.5, whereas the standard rack cutter tooth thickness factor is 0.5. The maximum fillet stresses of the pinion and gear is not equal for non-standard high contact ratio spur gear drives when the gear ratio increases. In order to avoid the fatigue failure of the gear, the fillet stresses of the pinion and gear should be balanced. This balanced stress is predicted as the optimum fillet stress. Hence, the present study focuses to optimize the fillet stress with respect to the rack cutter tooth thickness factor of the pinion and gear through finite element analysis. Also, a parametric study is carried out to obtain the influence of some gear parameters, such as gear ratio, teeth number in the pinion, pressure angle, addendum height and corrected gear drives (S+, S− and So) on the optimum fillet stress with respect to the rack cutter tooth thickness factor of the pinion and gear.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.