Abstract
A central composite design was carried out to investigate the effect of temperature, initial pH and glucose concentration on fermentative hydrogen production by mixed cultures in batch test. The modeling abilities of the response surface methodology model and neural network model, as well as the optimizing abilities of response surface methodology and the genetic algorithm based on a neural network model were compared. The results showed that the root mean square error and the standard error of prediction for the neural network model were much smaller than those for the response surface methodology model, indicting that the neural network model had a much higher modeling ability than the response surface methodology model. The maximum hydrogen yield of 289.8 mL/g glucose identified by response surface methodology was a little lower than that of 360.5 mL/g glucose identified by the genetic algorithm based on a neural network model, indicating that the genetic algorithm based on a neural network model had a much higher optimizing ability than the response surface methodology. Thus, the genetic algorithm based on a neural network model is a better optimization method than response surface methodology and is recommended to be used during the optimization of fermentative hydrogen production process.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.