Abstract

Fed-batch fermentation has gained attention in recent years due to its beneficial impact in the economy and productivity of bioprocesses. However, the complexity of these processes requires an expert system that involves swarm intelligence-based metaheuristics such as Artificial Algae Algorithm (AAA), Artificial Bee Colony (ABC), Covariance Matrix Adaptation Evolution Strategy (CMAES) and Differential Evolution (DE) for simulation and optimization of the feeding trajectories. DE traditionally performs better than other evolutionary algorithms and swarm intelligence techniques in optimization of fed-batch fermentation. In this work, an improved version of DE namely Backtracking Search Algorithm (BSA) has edged DE and other recent metaheuristics to emerge as superior optimization method. This is shown by the results obtained by comparing the performance of BSA, DE, CMAES, AAA and ABC in solving six fed batch fermentation case studies. BSA gave the best overall performance by showing improved solutions and more robust convergence in comparison with various metaheuristics used in this work. Also, there is a gap in the study of fed-batch application of wastewater and sewage sludge treatment. Thus, the fed batch fermentation problems in winery wastewater treatment and biogas generation from sewage sludge are investigated and reformulated for optimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.