Abstract

This article proposes a novel optimization technique of fault-tolerant mixed-criticality multi-core systems with worst-case response time (WCRT) guarantees. Typically, in fault-tolerant multi-core systems, tasks can be replicated or re-executed in order to enhance the reliability. In addition, based on the policy of mixed-criticality scheduling, low-criticality tasks can be dropped at runtime. Such uncertainties caused by hardening and mixed-criticality scheduling make WCRT analysis very difficult. We show that previous analysis techniques are pessimistic as they consider avoidably extreme cases that can be safely ignored within the given reliability constraint. We improve the analysis in order to tighten the pessimism of WCRT estimates by considering the maximum number of faults to be tolerated. Further, we improve the mixed-criticality scheduling by allowing partial dropping of low-criticality tasks. On top of those, we explore the design space of hardening, task-to-core mapping, and quality-of-service of the multi-core mixed-criticality systems. The effectiveness of the proposed technique is verified by extensive experiments with synthetic and real-life benchmarks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.