Abstract

To determine the effect of environmental conditions on the production of extracellular lignocellulose-degrading enzymes by Streptomyces sp. F2621 and to assess the potential use of these enzymes in the hydrolysis of lignocellulose material. The production of extracellular lignocellulose-degrading enzymes, endoxylanase, endoglucanase and peroxidase during the growth of Streptomyces sp. F2621 in basal salts-yeast extract medium containing different carbon sources and the effect of a number of environmental parameters (e.g. carbon sources and concentrations, pH and temperature) were investigated. The highest endoxylanase (22.41 U ml(-1)) and peroxidase (0.58 U ml(-1)) activities were obtained after 2-4 days of incubation at 30 degrees C in a basal salts medium containing 0.4% (w/v) oat spelt xylan and 0.6% (w/v) yeast extract, corresponding to C : N ratio of 6 : 1. Cell-free extracellular enzyme preparations from the strain were capable of releasing both sugar and aromatic compounds during incubation with eucalyptus paper pulp, straw and xylan. Overall, 9.3% hydrolysis of xylan occurred after 24-h incubation. However the rates of hydrolysis of paper pulp and straw were approximately twofold less than xylan hydrolysis, although the total percentage hydrolysis of available substrate (24.5% and 16.3%, respectively) was greater than xylan hydrolysis. The high levels of enzyme production achieved under batch cultivation conditions, coupled with no significant production of endoglucanase during the growth phase of organism and the release of both sugar and aromatic compounds from paper pulp and straw signify the suitability for these enzymes for industrial applications such as pulp and paper production. The results highlight the environmental conditions for the production of extracellular lignocellulose-degrading enzymes by Streptomyces sp. F2621 and suggest the use of streptomycetes and/or their enzymes in industrial processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.