Abstract
AbstractPolycyclic aromatic hydrocarbons (PAHs) are persistent organic pollutants (POPs) that are widely distributed in the environment and cause significant environmental damage. Furthermore, they endanger human health by polluting food from the natural environment and food processing. Therefore, it is necessary to accurately detect PAHs in various sample matrices, which requires precise, practical, and rapid detection methods. The purpose of this research is to develop a high sensitivity analysis method by analyzing the optimum excitation and emission wavelengths of EPA's 15 priority polyaromatic hydrocarbons in the UHPLC fluorescence detector (Acenaphthene, Anthracene, Benzo[a]anthracene, Benzo[b]fluoranthene, Benzo[k]fluoranthene, Benzo[ghi]perylene, Benzo[a]pyrene, Chrysene, Dibenzo[a,h]anthracene, Fluoranthene, Fluorene, Indeno[1,2,3-cd]pyrene, Naphthalene, Phenanthrene, and Pyrene). An average of 17–25 analyses were performed for each polyaromatic hydrocarbon, and optimized excitation and emission wavelengths were obtained. LOD levels between 2 and 90 ppt were obtained with the method created in this direction. It is worth mentioning that the limits achieved for some PAH parameters are lower than those reported in the literature after pre-concentration steps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.