Abstract
Glucosyltransferases can be applied in the synthesis of prebiotic oligosaccharides. Enzymatic synthesis using acceptors can be used to obtain these carbohydrates. When maltose is the acceptor, oligosaccharides containing one maltose moiety and up to eight glucose units linked by α-1,6-glycosidic bonds are obtained as the product of dextransucrase acceptor reaction. In this work, the enzymatic synthesis of isomalto-oligosaccharides using dextransucrase from Leuconostoc mesenteroides NRRL B-512F was optimized by response surface methodology. The effect of maltose and sucrose concentrations on the acceptor reaction was evaluated in a batch reactor system. Partially purified enzyme was used to reduce the enzyme purification cost. The results showed that high sucrose concentrations in conjunction with high maltose levels enhanced the isomalto-oligosaccharide synthesis. A productivity of 42.95 mmol/L.h of isomalto-oligosaccharides was obtained at the optimal operating condition (100 mmol/L of sucrose and 200 mmol/L of maltose). PRATICAL APPLICATIONS Oligosaccharides as prebiotic have a large application in food formulations, and their beneficial role in human health have been extensively studied. Although the acceptor mechanism of dextransucrase has already been extensively studied, an industrial process has not been developed yet for enzyme synthesis of isomalto-oligosaccharide. The process studied in this work allows the large-scale preparation of isomalto-oligosaccharide using partially purified enzyme.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.