Abstract

Energy transport in photosynthetic systems can be tremendously efficient. In particular, we study exciton transport in the Fenna-Mathews-Olson (FMO) complex found in green sulphur bacteria. The exciton dynamics and energy transfer efficiency depend on the interaction of excited chromophores with their environment. Based upon realistic, site-dependent models of the system-bath coupling, we present results that suggest that this interaction may be optimized in the case of FMO. Furthermore we verify two transport pathways and note that one is dominated by coherent dynamics and the other by incoherent energy dissipation. In particular, we note a significant correlation between energy transport efficiency and coherence for exciton transfer from bacteriochlorophyll (BChl) 8 to BChl 4.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call