Abstract

Natural gas hydrate has potentially become a clean energy source in the future. Most natural gas hydrates are stored in the ocean, and the exploitation of deep-sea gas hydrates requires the construction of offshore platforms. Generally, the platform consumes a lot of energy due to its impact on the marine environment. Therefore, the adoption of a reasonable energy equipment operation scheme can effectively reduce the platform operation cost. Compared with the way of directly consuming natural gas to provide power to the platform, introducing wind energy may be cleaner and more economical. However, the uncertainty and volatility of wind power must be carefully considered when it is introduced. The paper establishes a mixed integer linear programming (MILP) model to solve this problem. A flexible distributed energy system framework for the natural gas hydrate mining platform is constructed to design and optimize the equipment scale and the number of wind turbines with the minimum total annual cost of the energy system as the objective function. A case study is conducted by an established model and the results show that access to wind energy can significantly reduce the cost of the energy system by 18.9 % and CO2 emissions by 46.9 %. Meanwhile, the uncertainty of electric energy demand is the most sensitive to the optimization results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.