Abstract

In order to evaluate the effectiveness of in-place emergency ventilation strategies to control smoke spread in the event of a fire in a section of a roadway tunnel, both numerical and experimental studies were performed. The experimental study was conducted to provide the necessary initial and boundary conditions for the numerical phase of the investigation. A fire heat release rate of 1 MW was used in all fire tests. This fire heat release rate was selected to minimize the risk of damage to the tunnel and its associated systems while producing reliable data for visualizing the smoke movement in the tunnel. The numerical study used Computational Fluid Dynamics, Fire Dynamic Simulator version 4.0 to investigate smoke removal in the tunnel for large fire of 30 MW (bus or truck on fire). In total, four field fire tests and seven numerical simulations were conducted. Based on the study results, recommendations were made to optimize the ventilation scenarios in the tunnel section. This article presents the details of the study as well as the recommendations made.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.