Abstract

A Poly(vinyl alcohol) (PVA)/cellulose nanocrystals (CNCs) composite nanofibrous air filter was fabricated via electrospinning. CNCs were added to improve the overall filtration performance for particulate matter (PM) removal. The integral effect of different properties of electrospinning suspension on the PM2.5 removal efficiency and pressure drops were studied. To optimize the fabrication parameters, variables such as suspension concertation and CNCs percentage at different levels were systematically investigated using response surface methodology. The feasible operating space, where the suspension concentration and CNCs percentage were varied from 6 to 8% and 5 to 20%, respectively, was evaluated with reduced experimental runs using a face-centered central composite design. Our results indicate the quadratic models developed for predicting responses were adequate. The optimum filtration performance for PM2.5 was achieved with 7.34% of suspension concentration and 20% of CNCs percentage, where the removal efficiency was 94% and the pressure drop was only 34.9 Pa.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call