Abstract

Abstract This contribution presents the modelling and optimization strategy of the key intermediate processes in Power-to-X: water electrolysis and carbon capture. While the water electrolysis process is set to maximize the profit provided market data, the control structure in the capture process allows the production of the stoichiometric amount of carbon dioxide for further processing to methanol. The flexible operation of electrolyzers allowed efficient conversion of renewable energy into hydrogen with minimum grid compensation (around 4%). Furthermore, the capture process showed a favourable response to the fluctuating demand of CO2, with deviations lower than 1% over the simulated period. This optimization strategy represents a viable option for Power-to-X processes to cope with the fluctuations of volatile renewable energy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.