Abstract
This study aims to optimize ammonium removal from NH4Cl-enriched groundwater at different concentrations using an electrodialysis (ED) process. A customized design (CD) based on response surface methodology (RSM) was employed to develop predictive models and improve the performance of the demineralization system. Ion removal efficiency was evaluated in 32 unique experimental configurations, taking into account variations in three input parameters: voltage (A), initial ammonium concentration (B) and demineralization rate (C). These parameters were selected for their impact on two response variables: electric conductivity (Y1) and final ammonium concentration (Y2). An in-depth analysis of variance (ANOVA) was performed to examine the variables and their interactions. The results indicated that Y1 was significantly influenced by C, while Y2 was influenced by B. In addition, the predictive models demonstrated strong correlations, with a coefficient of determination (R2) greater than 0.88 for both response variables. The RSM approach applied to optimize the parameters studied identified the following optimum values: 14.17 V for A, 1 mg/L for B and 70 % for C, giving Y1 of 215.377 μS/cm and Y2 of 0.279 mg/L.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.