Abstract

From the point of view of biocompatibility of bone analog materials, cell-material interaction is of fundamental importance. In this article, we report the effect of pulse electric field stimulation on cell-material interaction by analyzing cellular functionality and viability. An in-house fabricated pulse electric field setup was used for the application of electric field during cell culture experiments. To optimize voltage/electric field, the first set of exploratory experiments was conducted with varying field strength at fixed frequency, and subsequently, the frequency of the electrical stimulation was varied to study its influence on the proliferation of L929 mouse fibroblast cells on gelatin-coated control disc. Subsequently, L929 cells were cultured on hydroxyapatite (HA) and HA-40 wt % BaTiO₃ composite. Cell-cultured samples were analyzed qualitatively as well as quantitatively using fluorescence microscope and scanning electron microscope. It has been demonstrated that due to the application of electric field during the cell culture experiment, the cell proliferation and the cell spreading on the surface of the biomaterials were enhanced within a narrow window of voltage/frequency of electrical stimulation. At lower field intensities, the energy density is quite low and increases parabolically with field strength. There is no significant increase in the temperature (ΔT ~10⁻⁵ K) of the medium due to the application of short duration pulse electric field. This led us to believe that electric field with appropriate strength and duration can enhance the cell-material interaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.