Abstract

In this study, machinability tests were carried out on a corrosion-resistant superalloy subjected to shallow (SCT) and deep cryogenic treatment (DCT) via electrical discharge machining (EDM), and the effect of the cryogenic treatment types applied to the material on the EDM processing performance was investigated. Experimental parameters, including pulse-on time (300, 400 and 500 μs), peak current (A) (6 and 10 A) and material types (untreated and treated with SCT and DCT), were used to construct the full factorial experimental design. The resulting average surface roughness (Ra) and material removal rate (MRR) results were optimized using the Taguchi L18 method. According to the Taguchi-based gray relational analysis, the optimal parameters for both Ra and MRR were determined as cryogenic treatment, pulse-on time and peak current, respectively. The response table obtained using the Taguchi method showed the most effective factors as A1BlC3 for Ra and A2B2C1 for MRR values. According to the ANOVA results for determining parameters affecting performance, peak current was the most effective factor for average surface roughness and MRR, at 74.79% and 86.43%, respectively. When examined in terms of Taguchi-gray relational degrees, the optimal parameters for both Ra and MRR were observed in the experiment performed with the SCT sample at a peak current of 6 A and 300 μs pulse-on time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call