Abstract

The optimization of solar field designs of stationary thermal collectors, taking into account shading and masking effects, may be based on energy or economic criteria. Obtaining maximum energy from a given field size or determining the required minimum field area that produces a given amount of energy are examples of energy criteria. Designing a solar plant with a minimum cost or a plant that produces minimum cost of unit energy are examples of economic criteria. These design problems may be formulated as optimization problems with objective functions and sets of constraints (equality and inequality) for which mathematical optimization techniques may be applied. This paper deals with obtaining optimal field and collector design parameters (number of rows, distance between collector rows, collector height, and collector inclination angle) that result in minimum periodic cost of a solar plant producing a given amount of annual energy. A second problem is the determination of optimal field and collector design parameters resulting in minimum cost of unit energy for the solar plant. In both cases, the optimal deployment of the collectors in the solar field as a function of the daily energy demand—cost of land and collector efficiency as parameters—is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.