Abstract

• Nonlinear PDE-constrained optimization multiphysics problem is considered. • Plate vibrations due to mechanical and electromagnetic loads are studied. • Optimal characteristics of an electromagnetic field minimizing vibrations are found. • Joule heating is controlled through introduction of a thermal constraint. We consider the problem of optimizing the dynamic response of a mechanically loaded, rectangular, electrically conductive anisotropic composite plate by applying an electromagnetic field, which exploits the electro-magneto-mechanical field coupling phenomenon. An important aspect of the formulated nonlinear partial differential equation (PDE)-constrained optimization model is the presence of a thermal constraint that prevents polymer matrix degradation in the composite material due to Joule heating produced by the electromagnetic field. A black-box optimization approach based on the active set algorithm is employed. A system of governing PDEs is solved using a series of sequential numerical procedures that includes the method of lines, Newmark time-stepping scheme, quasilinearization, integration of two-point boundary-value problems, and a superposition method followed by orthonormalization. Implementation in hyper-dual arithmetics facilitated automatic differentiation and computation of the gradient. Optimization results show that application of an electromagnetic field with optimal characteristics enables one to significantly reduce the amplitude of the plate vibrations while controlling for Joule heating.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.