Abstract
Functional TiO2 films were prepared by using a facile one-step Pechini Sol-Gel method. The intrinsical contribution mechanism of film thickness to the photo-to-electric performance of DSSC was explored with analysis of interfacial charge recombination effects, on which, the characteristics of DSSC were optimized via film thickness controlling. The influence of TiO2 film thickness on dye absorption, charge recombination process and photovoltaic performance of DSSC were by UV-Vis, electrochemical impedance spectroscopy and I-V test under dark condition, respectively. The results show that as TiO2 film thickness increases, the light harvesting efficiency and photocurrent of DSSC increase, which were induced by the enhancement of dye absorption. However, the photovoltage decreases gradually with the increaese of electron recombination probability. As an increase, combination of the positive and negative effects above enables the Pechini-type DSSC efficiency first increase and then decline, with an optimum efficiency of 7.75% at the film thickness of 10.7 μm, in contrast to 6.5% of the routine method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.