Abstract

By increasing the daily needs of human energy, human manipulation of natural energy sources is expanded and encouraged the human society to developing science, knowledge and technology. Mechanical specific energy required energy for drilling the unit of formation volume. This parameter can be used for functional analysis of drilling, drilling bit optimization and investigating of instability has been made during drilling operations. This parameter can be used for decreasing of drilling costs by increasing drilling speed, optimized the useful life of the drilling bit and determine the right time to replace the drilling bit, and in some cases reduced to a minimum amount. In South Pars field in Iran, many wells have been drilled; however detailed statistics processes hadn’t done for optimizing drilling parameters and their impact on mechanical specific energy. By results of these studies, we can analyze performance and drilling parameters such as weight on drilling bit, rotational speed, penetration rate, etc. In the most investigated cases, mechanical specific energy at the final period time of drilling on each wells has been increased gradually due to the speed movement reduction. Although by investigating middle formations in section of 12.25 inch, all existing wells on a platform in one of the phases of Iran’s South Pars field are being studied, which contains formations such as Hith, Surmeh, Neyriz, Dashtak and Kangan. Studies were done in two parts. In the first part, the range of optimized drilling parameters that is increasing drilling speed and reducing the required amount of energy for drilling formation. This process by investigating mechanical specific energy and its relationship with uniaxial compressive strength in five studied formation have been presented. In the second part, correlations to predict the mechanical specific energy in this area by statistical methods by SPSS software, presented and reviewed. Then, by the most appropriate relationship, the most influential drilling parameters on mechanical specific energy have been set. However, for drilling the next wells in this area drilling parameters with the most priority influences on mechanical specific energy, proposed in the optimum range, will be recommended.

Highlights

  • Special mechanical energy is the required amount of energy for drilling the formation

  • High costs of hiring drilling rigs and limit use of some tools such as bit and borehole assembly that we have in Iran, this research is done for optimizing drilling parameters due to formation strength parameters by using mechanical specific energy

  • As well as from a variety of statistical methods, SPSS software was used in this research

Read more

Summary

Introduction

Special mechanical energy is the required amount of energy for drilling the formation. Drilling engineers are always by applying different weights on bit, speed of rotation and mud flow rate within the range of normal operation [6] [7] [8] [9] They try to minimize the amount of mechanical specific energy and maximize the penetration rate of bit on the formation. High costs of hiring drilling rigs and limit use of some tools such as bit and borehole assembly that we have in Iran, this research is done for optimizing drilling parameters due to formation strength parameters by using mechanical specific energy. By investigating mechanical specific energy and its relationship with uniaxial compressive strength with increasing drilling speed, lengthen beneficial life of bit and borehole assembly, we can optimize costs that it is the main concern of petroleum companies [17] [18] [19]

Working Procedure
Data Collection
Total Investigated Wells are Examined for Each Formation
Identify the Optimum Points in Each of the Formations
Descriptive Statistics
Wrap up
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.