Abstract

Faraday rotation spectroscopy (FRS) is generally used to detect the concentrations of various paramagnetic trace gases because of its high detection sensitivity, zero background noise and the ability to get rid of the interference of diamagnetic materials effectively. In most of FRS technologies, the used electromagnetic fields are produced by coils, thereby triggering off some problems such as high energy consumption and excessive heat generation. Thus the modeling and the simulation study of spatial magnetic field distribution based on the combined ring permanent magnets are carried out to establish an axially distributed homogeneous magnetic field and provide a permanent magnet-based homogeneous magnetic field along the optical axis for FRS measurement. In this simulation, the method of finite element mesh division is adopted based on basic electromagnetic relationship in Maxwell equations. By the simulation study of the magnetic field distribution of the actual Nd-Fe-B permanent magnet magnetic ring array, the physical model proves to be reliable. Basically, three methods of optimizing the permanent magnetic ring arrays. i.e. single ideal value optimization method, the multi-part single objective optimization method, and the gradient optimization method, are proposed. The single ideal value optimization method and the multiple ideal value optimization method are used to realize the optimization of magnets. However, by analyzing the two methods, it is clear that compared with the single ideal value optimization method, the multiple ideal value optimization method in which the whole region is divided into several small parts can achieve good uniformity of permanent magnet array. In this way, the third method, i.e. the gradient optimization method is used to realize the construction of a homogeneous magnetic field with a uniform central axis magnetic flux density distribution used for FRS. Finally, the standard magnetic field uniformity for measuring the quality of magnet field is suggested, and through the calculation and evaluation of the magnetic field uniformity, the optimization effects of different optimization methods are analyzed and compared with each other. And the final results about realizing a homogeneous magnetic field provide a reference for developing the FRS equipment based on permanent magnets.

Highlights

  • 摘 要 法拉第磁旋转光谱技术因其高灵敏度,零背景噪声以及能有效避免抗磁 性物质干扰的特性被应用于各类顺磁性痕量气体的探测中。目前大部分 法拉第磁旋转光谱技术采用交流线圈构造电磁场,存在能耗高、发热多 等问题。为此,开展了基于组合环形永磁体的空间磁场分布建模仿真研 究,意在建立轴向分布的磁场,为法拉第磁旋转光谱测量提供基于永磁 体的沿光轴方向的匀强磁场。仿真采用有限元网格剖分的方法,基于麦 克斯韦方程组,开展组合磁环的磁场分布仿真研究,并通过实验测量实 际钕铁硼永磁体磁环阵列的磁场分布,证明了建立物理模型的可靠性。 在此基础上提出了对永磁体磁环阵列的 3 种优化方案——单理想值优化、 多段式单理想值优化和梯度优化方案,来构造中心轴线磁感应强度分布 均匀的匀强磁场。最后通过引入磁场均匀度,计算评估并分析比较了不 同优化方案的优化效果,为研发基于永磁体的法拉第磁旋转光谱设备提 供参考。.

  • 法拉第磁旋转光谱(Faraday Rotation Spectroscopy,简写为 FRS)以分子吸 收线在磁场的作用下发生 Zeeman 效应而引起的磁致双折射效应为基本原理[1,2] 。 基本原理图如图 1 所示。激光通过起偏器变成线偏振光并通过轴向磁场,当在沿

  • 是不受 H2O 和 CO2 分子的干扰,这大大提高了 FRS 探测大气顺磁性分子的选择

Read more

Summary

Introduction

摘 要 法拉第磁旋转光谱技术因其高灵敏度,零背景噪声以及能有效避免抗磁 性物质干扰的特性被应用于各类顺磁性痕量气体的探测中。目前大部分 法拉第磁旋转光谱技术采用交流线圈构造电磁场,存在能耗高、发热多 等问题。为此,开展了基于组合环形永磁体的空间磁场分布建模仿真研 究,意在建立轴向分布的磁场,为法拉第磁旋转光谱测量提供基于永磁 体的沿光轴方向的匀强磁场。仿真采用有限元网格剖分的方法,基于麦 克斯韦方程组,开展组合磁环的磁场分布仿真研究,并通过实验测量实 际钕铁硼永磁体磁环阵列的磁场分布,证明了建立物理模型的可靠性。 在此基础上提出了对永磁体磁环阵列的 3 种优化方案——单理想值优化、 多段式单理想值优化和梯度优化方案,来构造中心轴线磁感应强度分布 均匀的匀强磁场。最后通过引入磁场均匀度,计算评估并分析比较了不 同优化方案的优化效果,为研发基于永磁体的法拉第磁旋转光谱设备提 供参考。. 法拉第磁旋转光谱(Faraday Rotation Spectroscopy,简写为 FRS)以分子吸 收线在磁场的作用下发生 Zeeman 效应而引起的磁致双折射效应为基本原理[1,2] 。 基本原理图如图 1 所示。激光通过起偏器变成线偏振光并通过轴向磁场,当在沿 是不受 H2O 和 CO2 分子的干扰,这大大提高了 FRS 探测大气顺磁性分子的选择 了 FRS 高灵敏度探测 NO,其通过给线圈提供 3.5A 的电流,产生了 110G(高斯) Zaugg 等人采用 FRS 实现了 NO2 的高灵敏度探测,采用 7A, 832 Hz 的交流电,产生了 230G 的轴向磁场,达到了 1ppbv 的探测灵敏度[17]。在

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call