Abstract

ABSTRACTDirect arylation polymerization (DArP) is an emerging alternative to Stille and Suzuki polymerizations. This method is attractive as it allows preparation of high‐molecular‐weight conjugated polymers in good yield without the need to metallate monomers. Despite this promise, for poly(3‐hexylthiophene) (P3HT) and related polymers that have β‐protons on the thiophene ring, DArP is known to produce β‐defects, which make the polymer properties different from polymers produced by traditional methods. Here, we demonstrate that DArP conditions based on simple, inexpensive, and bench‐stable reagents can be tuned to limit the amount of defects and produce P3HT with properties remarkably similar to Stille P3HT. Specifically, lowering the reaction temperature, lowering the amount of catalyst, and using a bulkier carboxylate ligand is critical. Optimized conditions include reacting 2‐bromo‐3‐hexylthiophene with 0.25 mol % of Pd(OAc)2, 1.5 equivalents of K2CO3, and 0.3 equivalents of neodecanoic acid in N,N‐dimethylacetamide at 70 °C and give DArP P3HT with ∼60% yield, regioregularity of 93.5%, molecular weight of 20 kDa, polydispersity of 2.8, and melting point of 217 °C, providing a very close match to Stille P3HT, which is obtained with 70–80% yield, 91–94% regioregularity, molecular weight of 15–25 kDa, polydispersity of 2.5–2.8, and melting point of 214–221 °C. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2660–2668

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.