Abstract
Abstract A proper waste management practice such as anaerobic digestion for the waste generated by the agro-food industries could minimize the amount of material disposal to landfill. In our study, the improvement of methane production was elucidated through the pretreatment optimization of the mixed fruit wastes (FW). Dilute acetic acid pretreatment of FW was optimized in order to increase the bioavailability and microbial accessibility. A maximum sugar recovery of 95% was achieved from the pretreated FW under the optimized conditions (0.2 M acetic acid, 62.5 °C, and 30 min). Fourier transform infrared spectroscopy (FTIR) and Thermogravimetric (TG) analyses verified the presence of cellulosic material in the pretreated FW. X-ray diffraction (XRD) analysis indicated that the crystallinity index was increased to 56% after the disruption of complex hemicellulosic structures during pretreatment. Increased porosity and surface roughness of pretreated FW for better microbial attachment were confirmed in scanning electron microscopy (SEM). Anaerobic digestion showed increased methanogenic activity (10.17 mL g−1 VSinitial d−1) in pretreated FW, during 86-day experimental period due to better microbial attachment and accessibility during the digestion process. Higher methane yield of 53.58 mL g−1 VSinitial was observed in pretreated FW. Thus, acetic acid pretreatment is an effective method to improve the utilization and conversion of FW to methane.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.