Abstract
The article presents the capabilities of the LETS Web system, which uses Internet of Things (IoT) technology to analyze medical data to optimize diagnostic processes. The article focuses on implementing decision tree algorithms that analyze electrocardiogram (ECG) data to identify cardiac conditions. The study used three variants of decision trees that differed in structure and ECG parameters. Each variant was tested for its ability to accurately classify cardiac health conditions ranging from simple arrhythmias to complex arrhythmic changes. The study showed that modifications to the structure of the decision trees significantly affected their effectiveness. The most advanced variant of the tree, using multivariate data analysis, showed the highest efficiency in diagnosing complex conditions. The effectiveness of the different variants of decision trees varied, confirming the importance of selecting the suitable diagnostic model for the specifics of the data and clinical goals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.