Abstract

The valorization of some agri-food industry by-products, particularly plant waste, in a number of countries may be significantly interesting in the field of civil engineering because they can be used to prepare low-cost biomaterials that consume low amounts of energy and are environmentally friendly. Recently, it has been revealed that the valorization of date palm fibers (DPFs) waste and incorporating them into concrete may be one of the promising solutions that can be adopted in order to reduce or eliminate the huge amounts of this type of waste from our environment and to improve the properties of concrete. The present work aims primarily to investigate the effect of incorporating date palm waste fibers into sand concrete on the properties of this concrete in the fresh and hardened states. For this, two DPF contents were considered. First, 0.1% of DPFs with lengths 2cm and 6cm, and second 0.2%of DPFs with lengths 2cm and 6cm. Furthermore, a factorial design was used for the purpose of analyzing the influence of varying these two parameters, i.e. fiber content and fiber length, on the physico-mechanical properties of the sand concrete produced. In addition, it should be noted that the response to be considered in this design is the compressive and flexural strengths. Moreover, the JMP statistical software was utilized for analyzing the interactions observed and examining the responses that is predicted by the model generated using the factorial design. The findings showed that the expected responses obtained from the adopted model are in good agreement with the experimental data. Further, it was found that the fiber length factor has a positive effect on the response (strength). However, increasing the DPF content in the formulation of sand concrete has a negative effect on his compressive strength.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call