Abstract

In a typical raised floor data center with alternating hot and cold aisles, air enters the front of each rack over the entire height of the rack. Since the heat loads of data processing equipment continues to increase at a rapid rate, it is a challenge to maintain the temperature within the requirements as stated for all the racks within the data center. A facility manager has discretion in deciding the data center room layout, but a wrong decision will eventually lead to equipment failure. There are many complex decisions to be made early in the design as the data center evolves. Challenges occur such as optimizing the raised floor plenum, floor tile placement, minimizing the data center local hot spots etc. These adjustments in configuration affects rack inlet air temperatures which is one of the important key to effective thermal management. In this paper, a raised floor data center with 4.5 kW racks is considered. There are four rows of racks with alternating hot and cold aisle arrangement. Each row has six racks installed. Two CRAC units supply chilled air to the data center through the pressurized plenum. Effect of plenum depth, floor tile placement and ceiling height on the rack inlet air temperature is discussed. Plots will be presented over the defined range. Now a multi-variable approach to optimize data center room layout to minimize the rack inlet air temperature is proposed. Significant improvement over the initial model is shown by using multi-variable design optimization approach. The results of multi-variable design optimization are used to present guidelines for optimal data center performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.