Abstract

AbstractThis paper deals with the optimization of the linear stability behavior of circulatory systems with respect to particularly advantageous damping properties. The technique is demonstrated by applying it to an industrial finite element model of a disc brake in order to reduce the propensity of squeal noise. After decomposing the damping matrix into several component matrices, which may have some special structure or physical relevance, the ratio of these are varied to either stabilize or make more stable the equilibrium state subject to sensible constraints. For the purpose of this study, a system is defined to be more stable if its eigenvalue with largest real part is as negative as possible. For a certain velocity range, it is shown to be beneficial to reduce the material damping in the pads and in the caliper, which might be counterintuitive from an engineer's perspective. (© 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call