Abstract

Owing to the complexity of grinding process, it has been very difficult to predict the optimal machining conditionswhich have been resulted in smooth surface finish, accurate geometric measurements and higher production rate. In thiswork, empirical models for surface roughness, roundness error and metal removal rate have been developed based onregression analysis. These models have been associated the grinding process parameters (work speed, feed rate and depth ofcut) with machining performances (metal removal rate, roundness error and surface roughness). Using these models, theoptimization has been carried out based on simulated annealing (SA) and genetic algorithm (GA) which have been the twopopular meta-heuristic optimization techniques. Finally, the results of the proposed techniques l have compared andexperimentally validated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.