Abstract
Problems of optimizing nonelastic circular shells are considered. The material of the shells is assumed to be a fiber-reinforced composite with fibers unidirectionally embedded in a relatively less stiff but ductile metallic matrix so that the material has the yield surface suggested by Lance and Robinson. The shell is subjected to an impulsive loading of short-time periods generating initial kinetic energy. During plastic deformation of the shell the initial kinetic energy is transformed into the plastic strain energy. The shell thickness is assumed to be piecewise constant. Various thicknesses and coordinates of the rings, where the thickness has jumps, are preliminarily unspecified. We look for a shell design for which the maximum residual deflection has a minimum value for the total weight given. The alternative problem of minimizing the shell weight for the maximum deflection given is also studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.