Abstract

This paper develops a new scalable and efficient model for the design ofp-cycles with the differentiated levels of node protection. The proposed model allows the indicated level of node survivability ranging from 0% to 100%, which could facilitate a carrier offer node-failure survivability (and hence availability) on a differentiated service basis. To designp-cycles, an integer linear program (ILP) is usually formulated with the prerequisite of a prior enumeration of all possiblep-cycle candidates. A huge number of candidates may exist in a large-scale network. Thus, the resulting ILP becomes intractable. We propose a new design and solution method based on large-scale optimization techniques, known as column generation (CG). With CG, our design method generatesp-cycle candidates dynamically when needed. Extensive experiments have been conducted for evaluation. The numerical results show that, with the spare capacity used only for link protection, up to 50% node-failure survivability can be achieved for free. Full node protection can be achieved at a marginal cost in comparison with those for link protection only.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.