Abstract

This paper proposes an online evolutive procedure to optimize the Material Removal Rate in a turning process considering a stochastic constraint. The usual industrial approach in finishing operations is to change the tool insert at the end of each machining feature to avoid defective parts. Consequently, all parts are produced at highly conservative conditions (low levels of feed and speed), and therefore, at low productivity. In this work, a framework to estimate the stochastic constraint of tool wear during the production of a batch is proposed. A simulation campaign was carried out to evaluate the performances of the proposed procedure. The results showed that it was possible to improve the Material Removal Rate during the production of the batch and keeping the probability of defective parts under a desired level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.