Abstract

Cu (I) phenyl acetylide was used as a source of copper to achieve a homogeneous distribution of Cu2O nanocrystals (10–80 nm) decorated on multiwalled carbon nanotubes (MWCNTs) having an average diameter of 10 nm. Pristine MWCNTs were first oxygen-functionalized by treating them with a mixture of concentrated (H2SO4/HNO3 : 3/1) acids and the products were characterized by X-ray powder diffraction, transmission and scanning electron microscopy, energy dispersive X-ray analysis, X-ray photoelectron spectroscopy and thermogravimetric analysis. An easy, efficient and one-step impregnation method was followed to produce copper-containing nanoparticles on the MWCNTs. The copper-treated MWCNTs dried at room temperature were seen to be well decorated by copper-containing nanoparticles on their outer surface. The MWCNTs were then heat-treated at 400 °C in a nitrogen atmosphere to produce a homogeneous distribution of cuprous oxide nanocrystals on their surface. By varying the ratio of copper to oxygen-functionalized MWCNTs, Cu2O nanocrystals decorated on MWCNTs with different copper content can be obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call